
Inheritance
What is it?



Abstractions - we do it all the time
Let’s say we were to write a file manager (or file browser). What types of 
objects is it it should handle?

Files, right?

It should be able to display a list of files in some directory and perhaps also to 
display each file as a thumbnail representation.

What type of files should it be able to list and display thumbnails for?

Does it matter? A file is a file, right?



File is an abstraction
It would be nice if we could treat all types of files the same way, regardless of 
whether it is a text file, audio file, video file, or some other type of file.

It should list the name and some kind of thumbnail representation.

So we could use File as an abstraction to mean “Any file which has a name and 
is capable of giving us its name and rendering some kind of thumbnail 
representation of itself” in our system.



A File could be a type, but are there many kinds?
So, our file manager could deal with File objects, that is, we could treat every 
actual file on the file system as a File object. File would then be an abstraction 
and we could talk about File as a type of objects in our system.

But there are many kinds of files. The thumbnail of an image should probably 
be different from the thumbnail of a video file etc.

We could think of AudioFile as a subtype of File. But we know that there are 
actually different types of audio files as well, so subtypes can have subtypes!

All files, however, share some common characteristics and behavior.



Another example
Let’s say we also were to write some kind of media player. Our media player 
should be able to find and read File objects from the filesystem. But we would 
be particularly interested to read media files, let’s say for instance audio files 
and video files.

MediaFile could be a subtype of File, and it could in turn have the subtypes 
AudioFile and VideoFile.

All media files could share the behavior of being playable, that is, invoking the 
method play() would make the files present their media (audio or 
video+audio).



What do we gain by all this nonsense?
One thing that we gain from using abstractions and using types and subtypes 
is that our application for playing media files can focus on what a MediaFile is 
in general (on an abstract level) which would make it capable of doing a few 
things which are common to all MediaFile objects (as we have defined them), 
but care less about what particular subtype of MediaFile it is dealing with at 
the moment.

As long as both the MediaFile subtypes AudioFile and VideoFile have a 
behaviour present() described in the supertype MediaFile, the player 
application can deal with any type of MediaFile and just present it.



Inheritance as a means of expressing subtypes
In Java, we can create subtypes using something called inheritance.

We can create hierarchies of types using some kind of inheritance mechanism. 

For now, you can think of it as defining all common treats in some kind of 
supertype (like File or MediaFile) and specifying how these treats are 
implemented differently in the subtypes.



Using supertypes and subtypes
If we have a reference to a File (as we have defined it in some class) we can be 
sure that we can call certain methods on it like thumbnail() or name() etc 
because these methods are declared in our File class.

And if we have a reference to a MediaFile object, we are certain that we can 
call present() on the object, since this method is declared in the MediaFile 
class (which we have written).

A file manager can call thumbnail() on all objects which are of a subtype to 
File, because subtypes keep the API of the super type, but might do it 
differently. We can call thumbnail, but the result may vary!


