
Introduction to
Bash

video lecture
03 Issuing commands

Commands
● Bash comes together with tons of small programs intended to be used in

the command line
● Such small programs are commonly referred to as commands
● Commands can accept arguments and flags/options
● Often a command doesn’t make sense without arguments or flags

$ cp
cp: missing file operand
Try 'cp --help' for more information.

● Here are some basic commands:
echo ls cd cp mv pwd head tail cat file

Options/flags
● You can instruct most commands how to do their job
● Options/flags typically start with a dash (short options):

ls -a
● or two dashes (long options):

ls --all
● The above tells ls to list all files, to include even files whose filename start

with a dot (hidden by default)
● ls -l (long listing) tells ls how to format its output (to include all sorts of

information)
● ls -1 (one column) tills ls how to format its output - one file per line

Arguments
● You can instruct many commands what to do using arguments
● Arguments come after the command: ls /tmp (list the /tmp directory)
● Many commands don’t make sense without an argument and require

arguments in order to work
cp ../file.txt Documents/

cd Documents/

ls /tmp/

mv old_filname new_filename

mpg321 Warlords.mp3

Commands that require arguments
● Often it is very intuitive when a command needs arguments
● Much like our natural language

○ put!
○ fetch!
○ give!
○ take!
○ punch!
○ kill!

● For instance the copy command, cp, needs to know what to copy and
where (same with the move command, mv)

Running a command occupies the shell
● When you run a command, it is by default run in the foreground
● That means you cannot use the shell until the command has finished
● Most commands are very quick so you won’t think about this
● Other commands are meant to run for a long time (a browser, an editor,

an image processing application, a web server)
● If you want to start a command in the background you put an ampersand

at the end of the command line:

$ gedit welcome.sh & # start the editor in bg
[1] 18663 # its process id was 18663
$ # its job number was 1

Basic job control
● Start process in background: put & at the end of command line
● Bring process to foreground:

fg or fg %N (where N is the job number)
● Bring process to background

bg or bg %N
● Stop (pause, not end) foreground job:

Ctrl-Z
● List current jobs:

jobs
● Ctrl-C terminates (abruptly) a foreground job

Jobs
● A job is a group of one or more processes
● A process is a program running and how the operating system handles

running programs
● Having a job with a group of commands allows you to control the group

as if it were one process (group of commands is typically a pipeline that
we will learn more about later on)

● When the shell terminates (e.g. you logout or close the terminal), any jobs
still running will be terminated

● Often you are warned about this when trying to logout, e.g.
“There are unfinished jobs”

A common use for Ctrl-Z, fg
● Some applications occupy the whole terminal window (like editors etc)
● Often, you want to go back to the shell to do some work, but don’t want to

stop the editor
● Then you pause the editor using Ctrl-Z which drops you back to the shell
● when you want to continue editing, you type fg to put the editor in the

foreground again (and you will continue exactly where you were)
● Imagine that you are writing a script and want to try how well it is doing
● You pause your editor and run the script and discover a bug
● You fg the editor, fix the bug, then Ctrl-Z again to run the script etc
● This is a very common workflow for developers working in Bash

Process
● When you start a program, the operating system loads the program

instructions to RAM and schedules it for execution
● The OS creates a process for each running program
● A process has the code and some contextual information (who started the

program and when, what is the current directory - where was it started -
etc)

● Each process has an ID called pid
● You can list processes with the ps command
● Processes means that you can run a program in more than one instance
● You can start most programs more than once in parallel (e.g. two Chrome

browsers running side-by-side, two terminals etc)

Examples of ps
$ ps
 PID TTY TIME CMD
17200 pts/33 00:00:01 bash
19271 pts/33 00:00:00 ps
$ gedit welcome.sh &
[1] 19288
$ ps
 PID TTY TIME CMD
17200 pts/33 00:00:01 bash
19288 pts/33 00:00:00 gedit
19300 pts/33 00:00:00 ps

Summary
● You run commands from the command line (the shell)
● Commands often need extra information

○ flags/options tell them how to do their job
○ arguments tell them what to do

● You run commands (and programs) in the foreground, occupying the shell
until the command exits or is stopped (paused)

● You can pause a program using Ctrl-Z
● You can start a program in the background using &
● Running programs are called jobs (a job can actually be a group)

○ To the operating system, each program is run in a process

● You can control jobs with fg and bg

