Introduction to
Bash
video lecture

03 Issuing commands



Commands

e Bash comes together with tons of small programs intended to be used in
the command line
e Such small programs are commonly referred to as commands
e Commands can accept arguments and flags/options
e Often a command doesn’'t make sense without arguments or flags
$ cp
cp: missing file operand
Try 'cp ——help' for more information.
e Here are some basic commands:
echo 1ls cd cp mv pwd head tail cat file



Options/flags

e You can instruct most commands how to do their job
e Options/flags typically start with a dash (short options):

ls -a
e or two dashes (long options):
ls —-all

e The above tells Is to list all files, to include even files whose filename start
with a dot (hidden by default)

e 1s -1 (longlisting) tells Is how to format its output (to include all sorts of
information)

e 1s -1 (one column)tills|s how to format its output - one file per line



Arguments

e You can instruct many commands what to do using arguments
e Arguments come after the command: 1s /tmp (list the /tmp directory)

e Many commands don't make sense without an argument and require
arguments in order to work
cp ../file.txt Documents/

cd Documents/
ls /tmp/
mv old_filname new_filename

mpg321 Warlords.mp3



Commands that require arguments

e Oftenitis very intuitive when a command needs arguments

e Much like our natural language
put!

fetch!

givel!

take!

punch!
o kill!

e Forinstance the copy command, cp, needs to know what to copy and
where (same with the move command, mv)

O O O O O



Running a command occupies the shell

When you run a command, it is by default run in the foreground

That means you cannot use the shell until the command has finished
Most commands are very quick so you won't think about this

Other commands are meant to run for a long time (a browser, an editor,
an image processing application, a web server)

e |If you want to start a command in the background you put an ampersand
at the end of the command line:

$ gedit welcome.sh & # start the editor in bg
[1] 18663 # 1ts process id was 18663
$ # its job number was 1



Basic job control

e Start process in background: put & at the end of command line
e Bring process to foreground:
fg or fg %N (where N is the job number)
e Bring process to background
bg or bg %N
e Stop (pause, not end) foreground job:
Ctrl-Z
e Listcurrentjobs:
jobs
e Ctrl-C terminates (abruptly) a foreground job



Jobs

e Ajobisagroup of one or more processes

e A processisaprogram running and how the operating system handles
running programs

e Having a job with a group of commands allows you to control the group
as if it were one process (group of commands is typically a pipeline that
we will learn more about later on)

e When the shell terminates (e.g. you logout or close the terminal), any jobs
still running will be terminated

e Often you are warned about this when trying to logout, e.g.
“There are unfinished jobs”



A common use for Ctrl-Z, g

Some applications occupy the whole terminal window (like editors etc)
Often, you want to go back to the shell to do some work, but don't want to
stop the editor

Then you pause the editor using Ctrl-Z which drops you back to the shell
when you want to continue editing, you type fg to put the editor in the
foreground again (and you will continue exactly where you were)

Imagine that you are writing a script and want to try how well it is doing
You pause your editor and run the script and discover a bug

You fg the editor, fix the bug, then Ctrl-Z again to run the script etc

This is a very common workflow for developers working in Bash



Process

When you start a program, the operating system loads the program
instructions to RAM and schedules it for execution

The OS creates a process for each running program

A process has the code and some contextual information (who started the
program and when, what is the current directory - where was it started -
etc)

Each process has an ID called pid

You can list processes with the ps command

Processes means that you can run a program in more than one instance
You can start most programs more than once in parallel (e.g. two Chrome
browsers running side-by-side, two terminals etc)



Examples of ps

$ ps

PID TTY TIME
17200 pts/33 00:00:01
19271 pts/33 00:00:00
$ gedit welcome.sh &
[1] 19288
$ ps

PID TTY TIME
17200 pts/33 00:00:01
19288 pts/33 00:00:00
19300 pts/33 00:00:00

CMD
bash

pPsS

CMD
bash
gedit
ps



summary

e You run commands from the command line (the shell)

e Commands often need extra information
o flags/options tell them how to do their job
o arguments tell them what to do

e You run commands (and programs) in the foreground, occupying the shell
until the command exits or is stopped (paused)

e You can pause a program using Ctrl-Z

e You can start a program in the background using &

e Running programs are called jobs (a job can actually be a group)
o To the operating system, each program is run in a process

e You can control jobs with fg and bg



