
Everything is an
object

Almost, but all objects are of type
Object!

In Java, every class is actually a subclass of Object
...or has a superclass which has Object as superclass...

There is a class called java.lang.Object in the Java API. The designers of Java
have decided that this class is the superclass of all classes.

This means that even if we write our own class, it will too be a subclass of
Object (you may think of subclass as subtype).

Object is the most abstract abstraction we can have in Java - it is so abstract
that it merely describes what is common between all instances of any class.

This level of abstraction focuses on purely programmatical features, what we
can do with instances/objects in general.

Any instance can be viewed as being of type Object
Since Object is the super-super-duper class of all classes, we can actually
choose to view any instance as being of this type.

This means that this would be perfectly legal (if we have a class called
Passport, and a class called Member):

Object obj = new Passport();
Object anotherObj = new Member();

But now we can only use the references as if they truly were “only” of Object
type. We can only call methods declared in java.lang.Object!

Advantages of the Object abstraction
It is convenient to know that any object of any type can represent itself as a
String. The method toString() declared in Object guarantees this! And since
every class ultimately is a subclass of Object, every instance of any class will
have a toString() method.

However, the implementation in the class Object is not so fancy, since it is
declared in a class which is very general. In fact, the only thing we get back
when calling the version of toString() which we get from Object, is the qualified
class name and an “@” and some hexadecimal number (all as a String of
course).

Another advantage is equality check
Another good thing with having every instance inheriting behavior from
Object, is that every object has a method for checking if it is “equal” to any
other object (passed as parameter to the equals method).

A companion to equals() is hashCode(), which produces a unique int number
for an object, and the deal here is that to objects which are considered equal,
also returns the same hashCode() number.

Using hashCode() is often more efficient than using the equals() method.

As with toString() the implementations of equals() and hashCode() we get from
Object, are not so sophisticated. We’ll soon look at how to deal with this.

How is it syntactically expressed to inherit Object?
To inherit a class in Java can be expressed in two ways. The way this chapter
deals with, is called “extending a class” using the keyword extends.

So, for instance java.lang.String extends java.lang.Object. In fact, all classes
which do not explicitly extend some other class extends Object.

When we write a class, we could actually say in the class declaration:

public class MyClass extends Object

But because of the rule that all classes implicitly extend Object, we don’t have
to.

If we’d want to, we could extend some other class
Using the keyword extends, we could explicitly extend some other class than
Object, which then would create a new subtype (subclass) of that explicitly
named class.

If we go back to our example of writing a file manager, and the abstractions of
File and the subtype MediaFile (with in turn its subtypes AudioFile and
VideoFile), the MediaFile class could be declared as:

public class MediaFile extends File

(Note that there are alternative ways to achieve this flexibility and hierarchy!)

What methods are not declared in Object?
Since Object is an abstraction of a runtime object of any type in the
programming language Java, it has a limited set of methods declared.

There is, for instance, no thumbnail() method in Object, since having a method
for rendering a thumbnail image, is not typical for every Java object of any
class...

Also, there is no changeEmail() method in Object, since the Java API designers
didn’t anticipate that every class would declare an instance variable for an
email address and thus a need for changing it ;-)

Therefore the methods in Object are more general and less specific.

So methods are “inherited”?
Yes, the methods in a superclass are inherited in subclasses. That’s just a
technical way of saying that a class which extends (inherits from) a superclass,
gets all the (public and protected) methods from the superclass, without the
need of repeating the same code declaring the methods.

And the methods inherited, are inherited “as-is”, so if we want to change them,
we actually have to write that code ourselves (as we will soon see).

Constructors are not inherited. Private methods and variables are “inherited”
but not accessible from the subclasses, since private stuff is only usable from
code in the very same class.

