Binary representation

There are at least 10 kinds of binary numbers; signed and unsigned
Binary numbers

- Uses only two symbols (or digits) 1 and 0
- One such digit is called a bit (from BinaryDigit)
- Using one bit, we can represent two values 0 and 1
- We need more than one bit to represent numbers larger than that

Two bits can represent 4 numbers (subscript show base):

- 0_{10} 00_2
- 1_{10} 01_2
- 2_{10} 10_2
- 3_{10} 11_2
Base 2 versus base 10

We are used to counting in base 10:

- Ten digits (0..9)
- Rightmost digit is the number of 10^0, next (going left) 10^1, then 10^2, etc

1011_{10} is (from right to left): $1\times10^0 + 1\times10^1 + 0\times10^2 + 1\times10^3$

Base 2:

- Two digits (0,1)

1011_2 is (from right to left): $1\times2^0 + 1\times2^1 + 0\times2^2 + 1\times2^3 = 11_{10}$
Base 2 versus base 10

- In base 10, the largest digit is 9, so we need two digits to represent 10.
- In base 2, the largest digit is 1, so we need two digits to represent 2_{10}.
 - $10_2 = 2_{10}$
 - $(0 \times 2^0 + 1 \times 2^1 = 2)_{10}$
- How many bits do we need to represent a certain number?
Bits needed to represent numbers

We’ll start with unsigned numbers (positive numbers and 0).

In order to represent N numbers, we need N combinations of 1s and 0s. That means the following amount of numbers from bits:

- \(2^0 = 1\) here for completion - we don't use 0 bits to store information ;-)
- \(2^1 = 2\) using one bit
- \(2^2 = 4\) using two bits
- \(2^3 = 8\) using three bits
- \(2^4 = 16\) using four bits
How many bits do we need to represent 300_{10}?

We need at least 300 combinations of 1s and 0s, so we are looking for the first power of 2 which is greater than or equal to 300.

2^9 is 512, so we need nine bits to represent the unsigned number 300.

Which number is it?

$(256 + 32 + 8 + 4 = 300)_{10}$ so the number would be:

100101100_2. For increased readability, we could write it 100 101 100.

Reading from left to right:

$1\times256 + 0\times128 + 0\times64 + 1\times32 + 0\times16 + 1\times8 + 1\times4 + 0\times2 + 0\times1$.
And decimal numbers for 300_{10}

We need at least 300 combinations of 0-9, so we are looking for the first power of 10 which is greater than or equal to 300.

10^3 is 1000, so we need three digits to represent the unsigned number 300.

Which number is it? $(300)_{10}$

Reading from left to right:
$3*100 + 0*10 + 0*1$.
bits and Bytes

- 8 bits is a common unit. It is called a Byte.
- What numbers (unsigned) can we represent in a Byte?

2^8 is 256. Then there's the zero. So the numbers 0..255 (that's 256 numbers!).

This is a rule. Unsigned numbers go from 0 to 2^n-1 where n is the number of bits.
What about negative numbers?

We don’t want to sound negative, but it seems a bit thin to only be able to represent 0 and the positive numbers in a computer.

- For a number to be either positive or negative (one of two signs), we need one bit of information
- Eight bit numbers will use one bit for the sign, leaving seven bits for “values”
- Leftmost bit is usually the signbit
One way of representing also negatives

- Leftmost bit reserved for sign (0 means positive, 1 means negative)
- The negative representation of a positive number is achieved by inverting all bits (0 becomes 1 and 1 becomes 0)
- Example:
 - 0000 0001₂ represents 1₁₀
 - 1111 1110₂ represents -1₁₀
- What about zero? We end up with
 - 0000 0000₂ represents +0₁₀
 - 1111 1111₂ represents -0₁₀
- Possible numbers to represent are -127,... -0, +0,... +127
Another way to represent negatives

- Called two’s complement - used by most modern computers
- Positive numbers are represented in “normal” binary (same as for unsigned numbers) using the bits following the signbit (which is 0 for positive numbers)
- For negative numbers, they are represented by the bits following the following operations:
 - Flip all bits of the absolute value of the number
 - Add one
- Example:
 - $1_{10} = (0000\ 0001)_2$
 - $-1_{10} = (1111\ 1110 + 1)_2 = 1111\ 1111_2$
What about zero?

- In two’s complement representation, we only have one zero
- “Trying” to represent -0 would lead to this:
 - Flip all bits of the absolute value of the number 0000 0000 gives 1111 1111
 - Add one too 1111 1111 = 0000 0000 (the carry is ignored)

```
11111 1111 (carry)
  1111 1111
+0000 0001
-------
10000 0000
```

The one is ignored!
What numbers can be represented?

- $-2^{n-1} \ldots 0 \ldots 2^{n-1}-1$ using two’s complement
- For eight bit representations, that means $-128 - 127$
 \[-2^7 = -128 \]
 \[2^7-1 = 127 \]
- 256 different numbers 128 negatives, 0 and 127 positives
Addition in unsigned and two’s complement

- Works the same as in decimal (using carry)
- \((1 + 1)_2 = 10_2\) (0 but with one in carry)
- \((1 + 0)_2 = 1_2\)
- \((0 + 1)_2 = 1_2\)
- \((0 + 0)_2 = 0_2\)

\[\begin{align*}
11 & \text{ (carry)} \\
0000 \ 0011 & \text{ (3}_10\text{)} \\
+0000 \ 0001 & \text{ (1}_10\text{)} \\
\hline
0000 \ 0100 & \text{ (4}_10\text{)}
\end{align*} \]
Subtraction in unsigned and two’s complement

- Works the same as in decimal (using borrow)
- \((1 - 1)_2 = 0_2 (0)\)
- \((1 - 0)_2 = 1_2\)
- \((0 - 1)_2 = 1_2 \text{(borrow 10)}\)
- \((0 - 0)_2 = 0_2\)

\[
\begin{array}{c}
10 \text{ (borrow 10)}
\\
0000 00\overline{0} (2_{10})
\\-0000 0001 (1_{10})
\\
\hline
0000 0001 (1_{10})
\end{array}
\]
Padding

- If we use eight bits, positive numbers are padded with zeros and negative numbers are padded with ones, as follows:

 0000 0011 (3_{10}) (unsigned 11 means the same as 0000 0011)
 1111 1111 (-1_{10}) (11 in two’s complement is the same as 1111 1111)

- Extending to 16 bits, just pad:

 0000 0000 0000 0011 (3_{10})
 1111 1111 1111 1111 (-1_{10})
Overflow and underflow

- When programming, values have types, and types have a size (number of bits)
- In Java, for instance, byte has 8 bits, short 16 bits, int 32 bits and long 64 bits

A byte (using 2’s complement representation) can hold the values between

1000 0000 (-128\(_{10}\)) through 0111 1111 (127\(_{10}\))
Overflow and underflow

A byte (using 2’s complement representation) can hold the values between $1000 0000 (-128_{10})$ through $0111 1111 (127_{10})$

1111 111 (carry)
0111 1111 (127_{10})
+0000 0001 (1_{10})

1000 0000 (-128_{10})
Overflow and underflow

A byte (using 2’s complement representation) can hold the values between 1000 0000 \((-128_{10})\) through 0111 1111 \((127_{10})\)

\[\begin{align*}
0111\ 1110 & \quad \text{(borrow)} \\
\pm000\ 0000 & \quad \text{\((-128_{10})\)} \\
-0000\ 0001 & \quad \text{\((1_{10})\)} \\
\hline
0111\ 1111 & \quad \text{\((127_{10})\)}
\end{align*}\]
Further reading

- http://www.wolframalpha.com/widgets/view.jsp?id=a291eb7ce8c6c27ed798151c4a0741bc WolframAlpha - calculator
- https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html Oracle tutorial - Java datatypes
- https://en.wikipedia.org/wiki/Two%27s_complement Wikipedia - Two's compliment
- https://en.wikipedia.org/wiki/Ones%27_complement One’s complement