
Introduction to
Bash

video lecture
14 - Advanced topics: editing the

command line, exit status,
conditionals, globbing, expansion...

Editing the command line - get efficient
● Arrow up goes up the history of commands, arrow down goes back
● One single arrow up gives you the previous command
● Escape and then a dot (or Alt-.) gives you the previous command’s last

argument
● Ctrl-A moves the cursor to the beginning of the line, Ctrl-E to the end
● Ctrl-arrow left skips one word to the left, Ctrl-arrow right, the opposite
● Ctrl-W erases the word to the left, Ctrl-K erases all words to the right
● Ctrl-Y pastes whatever was erased last

More nifty tricks
● !! issues the last command again
● Ctrl-R - searches the history interactively

Demonstration

Exit status
● All commands report their exit status to the shell
● Numeric value, where 0 means expected good result
● Other numbers mean some kind of failure, see the manual to learn what
● Is stored in the variable $?
● Allows you to use && for commands that depend on success of previous

commands and || for commands to issue if previous failed
rikard@newdelli:~/bash-intro/text-files$ find lorem80.txt && wc -l lorem80.txt
lorem80.txt
38 lorem80.txt
rikard@newdelli:~/bash-intro/text-files$ find lorem90.txt && wc -l lorem90.txt
find: ‘lorem90.txt’: No such file or directory
rikard@newdelli:~/bash-intro/text-files$ find lorem80.txt > /dev/null && wc -l lorem80.txt
38 lorem80.txt
rikard@newdelli:~/bash-intro/text-files$ find lorem90.txt &> /dev/null && wc -l lorem90.txt

Some words on the if-statement
● if takes one or more commands as arguments
● if the command (or last command) has exit status 0, then the

then-branch is executed
● otherwise the elif- or else-branch is executed
● ends with fi
● There is a version of the if-statement that uses double parentheses:

if ((points > 37))
then
 grade="VG"
fi

Example IF
$ if date | grep Mon
> then
> echo "Week starts now"
> elif date | grep Tue
> then
> echo "Only four more days"
> else
> echo "It's not Monday or Tuesday"
> fi
Tue Jul 30 14:38:59 CEST 2019
Only four more days

Example conditional
$ date | grep -q Tue && echo "Tuesdays rock" || echo "It's not Tuesday"
Tuesdays rock

Globbing
● Used to expand filenames (and directory names)
● * means “Anything”

○ *.txt - all files ending with .txt

● [0-9] means any one character between 0 and 9
● [A-H] means any one character between A and H
● ? means any one character

Brace expansion
● Curly braces allow us to expand combinations

$ echo SVT{1,2,24}
SVT1 SVT2 SVT24
$

Brace expansion
● Can be nested and very powerful

music/
├── classical
│ ├── classicism
│ ├── modernism
│ ├── modernist
│ └── renaissance
├── jazz
│ ├── bebop
│ ├── free_jazz
│ └── fusion
└── rock
 ├── hard_rock
 ├── metal
 └── rockabilly

Brace expansion
the directory tree was created with one single command line:

$ mkdir -p
music/{classical/{modernist,renaissance,classicism,modernism},rock/{hard_rock,
metal,rockabilly},jazz/{bebop,free_jazz,fusion}}

all on one line

Variables
● A named memory location
● Use $variable to expand the value
● Environment variables are shared between shells and initialized when the

shell starts
● Variable you create are local to the shell where they were created

Arguments to scripts end up in special variables
rikard@newdelli:~/bash-intro/text-files$ cat arguments.sh
#!/bin/bash

echo "Script name: $0"
echo "Number of arguments: $#"
echo "All arguments $*"
echo "First argument: $1"
echo "Second argument: $2"

rikard@newdelli:~/bash-intro/text-files$./arguments.sh one two
Script name: ./arguments.sh
Number of arguments: 2
All arguments one two
First argument: one
Second argument: two
rikard@newdelli:~/bash-intro/text-files$

Use quotes around variables
● If a variable contains spaces, Bash will treat the value as many words if

used unquoted
● Using double quotes around a variable when used, will tell Bash to treat it

as one single string (which may or may not contain spaces)

Forgetting to use quotes
rikard@newdelli:~/bash-intro/text-files$ name="Rikard Fröberg"
rikard@newdelli:~/bash-intro/text-files$ mkdir $name ← oops! should have used quotes
rikard@newdelli:~/bash-intro/text-files$ ls
a_few_urls.txt group_genre.txt lorem.txt
apa latin_uniq_frequencies.txt replaceme.txt
four.txt latin_words_sorted_lower_case.txt Rikard
frequency_table.txt latin_words_sorted.txt small_text.txt
Fröberg latin_words.txt swe.txt
group_album.txt lorem80.txt
rikard@newdelli:~/bash-intro/text-files$ ls -ltr
total 68
... (cut to fit the slide)...
-rw-rw-r-- 1 rikard rikard 2073 jul 25 14:42 frequency_table.txt
-rw-rw-r-- 1 rikard rikard 131 jul 25 14:53 group_album.txt
-rw-rw-r-- 1 rikard rikard 55 jul 25 14:53 group_genre.txt
drwxrwxr-x 2 rikard rikard 4096 jul 26 11:37 apa
drwxrwxr-x 2 rikard rikard 4096 jul 29 10:02 Rikard
drwxrwxr-x 2 rikard rikard 4096 jul 29 10:02 Fröberg

<<last page>>

